8 research outputs found

    Abnormalities in structural covariance of cortical gyrification in schizophrenia

    Get PDF
    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment

    Cortical folding and the potential for prognostic neuroimaging in schizophrenia

    Get PDF
    In 41 patients with schizophrenia, we used neuroanatomical information derived from structural imaging to identify patients with more severe illness, characterised by high symptom burden, low processing speed, high degree of illness persistence and lower social and occupational functional capacity. Cortical folding, but not thickness or volume, showed a high discriminatory ability in correctly identifying patients with more severe illness

    Speech structure links the neural and socio-behavioural correlates of psychotic disorders

    Get PDF
    Background: A longstanding notion in the concept of psychosis is the prominence of loosened associative links in thought processes. Assessment of such subtle aspects of thought disorders has proved to be a challenging task in clinical practice and to date no surrogate markers exist that can reliably track the physiological effects of treatments that could reduce thought disorders. Recently, automated speech graph analysis has emerged as a promising means to reliably quantify structural speech disorganization. Methods: Using structural and functional imaging, we investigated the neural basis and the functional relevance of the structural connectedness of speech samples obtained from 56 patients with psychosis (22 with bipolar disorder, 34 with schizophrenia). Speech structure was assessed by non-semantic graph analysis. Results: We found a canonical correlation linking speech connectedness and i) functional as well as developmentally relevant structural brain markers (degree centrality from resting state functional imaging and cortical gyrification index) ii) psychometric evaluation of thought disorder iii) aspects of cognitive performance (processing speed deficits) and iv) functional outcome in patients. Of various clinical metrics, only speech connectedness was correlated with biological markers. Speech connectedness filled the dynamic range of responses better than psychometric measurements of thought disorder. Conclusions: The results provide novel evidence that speech dysconnectivity could emerge from neurodevelopmental deficits and associated dysconnectivity in psychosis

    Structural covariance and cortical reorganization in schizophrenia: a MRI-based morphometric study

    Get PDF
    Background: In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganization process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganization. Methods: Structural MRI scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue was estimated at regional level across 90 atlas-based parcellations. Group level structural covariance was studied using a graph theoretical framework. Results: Patients had distributed reduction in grey matter volume, with high degree of localized covariance (clustering) compared to controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared to controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared to controls. Conclusion: Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganization with systematic de-escalation of conventional ‘hub’ regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency

    Beta-frequency electrophysiological bursts: BOLD correlates and relationships with psychotic illness

    Get PDF
    AIMS: To identify the BOLD (blood oxygenation level dependent) correlates of bursts of beta frequency band electrophysiological activity, and to compare BOLD responses between healthy controls and patients with psychotic illness. The post movement beta rebound (PMBR) is a transient increase in power in the beta frequency band (13-30 Hz), recorded with methods such as electroencephalography (EEG), following the completion of a movement. PMBR size is reduced in patients with schizophrenia and inversely correlated with severity of illness. PMBR size is inversely correlated with measures of schizotypy in non-clinical groups. Therefore, beta-band activity may reflect a fundamental neural process whose disruption plays an important role in the pathophysiology of schizophrenia. Recent work has found that changes in beta power reflect changes in the probability-of-occurrence of transient bursts of beta-frequency activity. Understanding the generators of beta bursts could help unravel the pathophysiology of psychotic illness and thus identify novel treatment targets. METHOD: EEG data were recorded simultaneously with BOLD data measured with 3T functional magnetic resonance imaging (fMRI), whilst participants performed an n-back working memory task. We included seventy-eight participants – 32 patients with schizophrenia, 16 with bipolar disorder and 30 healthy controls. Beta bursts were identified in the EEG data using a thresholding method and burst timings were used as markers in an event-related fMRI design convolved with a conventional haemodynamic response function. A region of interest analysis compared beta-event-related BOLD activity between patients and controls. RESULT: Beta bursts phasically activated brain regions implicated in coding task-relevant content (specifically, regions involved in the phonological representation of letter stimuli, as well as areas representing motor responses). Further, bursts were associated with suppression of tonically-active regions. In the EEG, PMBR was greater in controls than patients, and, in patients, PMBR size was positively correlated with Global Assessment of Functioning scores, and negatively correlated with persisting symptoms of disorganisation and performance on a digit symbol substition test. Despite this, patients showed greater, more extensive, burst-related BOLD activation than controls. CONCLUSION: Our findings are consistent with a recent model in which beta bursts serve to reactivate latently-maintained, task-relevant, sensorimotor information. The increased BOLD response associated with bursts in patients, despite reduced PMBR, could reflect inefficiency of burst-mediated cortical synchrony, or it may suggest that the sensorimotor information reactivated by beta bursts is less precisely specified in psychosis. We propose that dysfunction of the mechanisms by which beta bursts reactivate task-relevant content can manifest as disorganisation and working memory deficits, and may contribute to persisting symptoms and impairment in psychosis

    Regional Brain Correlates of Beta Bursts in Health and Psychosis: A Concurrent Electroencephalography and Functional Magnetic Resonance Imaging Study

    Get PDF
    Background: There is emerging evidence for abnormal beta oscillations in psychosis. Beta-oscillations are likely to play a key role in the coordination of sensorimotor information, crucial to healthy mental function. Growing evidence suggests that beta oscillations typically manifest as transient “beta-bursts” that increase in probability following a motor response, observable as Post-Movement Beta Rebound (PMBR). Evidence indicates that PMBR is attenuated in psychosis, with greater attenuation associated with greater symptom severity and impairment. Delineating the functional role of beta-bursts may therefore be key to understanding the mechanisms underlying persistent psychotic illness.Methods: We used concurrent EEG and fMRI to identify BOLD correlates of beta-bursts during the N-back working memory task and intervening rest periods in healthy participants (N = 30) and patients with psychosis (N = 48). Results: During both task-blocks and intervening rest periods, beta-bursts phasically activated regions implicated in task-relevant content, while suppressing currently tonically active regions. Patients showed attenuated PMBR that was associated with persisting Disorganisation symptoms, as well as impairments in cognition and role function. Patients also showed greater task-related reductions in overall beta-burst rate, and greater, more extensive, beta-burst-related BOLD activation.Conclusions: Our evidence supports a model in which beta-bursts reactivate latently maintained sensorimotor information and are dysregulated and inefficient in psychosis. We propose that abnormalities in the mechanisms by which beta-bursts coordinate reactivation of contextually appropriate content can manifest as Disorganisation, working memory deficits and inaccurate forward models, and may underlie a “core deficit” associated with persisting symptoms and impairment

    Structural correlates of formal thought disorder in schizophrenia: An ultra-high field multivariate morphometry study

    Get PDF
    Background: Persistent formal thought disorder (FTD) is one of the most characteristic features of schizophrenia. Several neuroimaging studies report spatially distinct neuroanatomical changes in association with FTD. Given that most studies so far have employed a univariate localisation approach that obscures the study of covarying interregional relationships, the present study focussed on the multivariate systemic pattern of anatomical changes that contribute to FTD. Methods: Speech samples from nineteen medicated clinically stable schizophrenia patients and 20 healthy controls were evaluated for subtle formal thought disorder. Ultra high-field (7. T) anatomical Magnetic Resonance Imaging scans were obtained from all subjects. Multivariate morphometric patterns were identified using an independent component approach (source based morphometry). Using multiple regression analysis, the morphometric patterns predicting positive and negative FTD scores were identified. Results: Morphometric variations in grey matter predicted a substantial portion of inter-individual variance in negative but not positive FTD. A pattern of concomitant striato-insular/precuneus reduction along with frontocingular grey matter increase had a significant association with negative FTD. Conclusions: These results suggest that concomitant increase and decrease in grey matter occur in association with persistent negative thought disorder in clinically stable individuals with schizophrenia
    corecore